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Memory effects and macroscopic manifestation of randomness

A. A. Stanislavsky*
Institute of Radio Astronomy, 4 Chervonopraporna Street, 61002 Kharkov, Ukraine

~Received 1 October 1999!

It is shown that due to memory effects the complex behavior of components in a stochastic system can be
transmitted to macroscopic evolution of the system as a whole. Within the Markov approximation widely used
in ordinary statistical mechanics, memory effects are neglected. As a result, a time-scale separation between
the macroscopic and the microscopic level of description exists, the macroscopic differential picture is not a
consequence of microscopic nondifferentiable dynamics. On the other hand, the presence of complete memory
in a system means that all its components have the same behavior. If the memory function has no characteristic
time scales, the correct description of the macroscopic evolution of such systems has to be in terms of the
fractional calculus.

PACS number~s!: 05.40.2a, 05.45.2a, 05.60.2k
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I. INTRODUCTION

The connection between microscopic dynamics of com
nents in stochastic systems and macroscopic descriptio
their behavior as a whole is very attractive in statistical ph
ics @1–3#. From the point of view of a single trajectory, th
path of a Brownian particle is continuous everywhere, bu
nowhere differentiable@4#. Such a path is not described b
an analytical function. In the theory of Brownian motio
formulated by Langevin@5# the velocity of the Brownian
particle was proved to be discontinuous@6#. The differen-
tiable nature of the macroscopic picture of Brownian mot
is due to the key role of the central limit theorem~fluctua-
tions of the microscopic quantities are independent of e
other!. This means that the microscopic and macrosco
levels of description of the process are separated in the
scale, and memory of the nondifferentiable character pecu
to the microscopic dynamics is lost in the long time lim
Consequently, the results of observing the motion of an
semble of trajectories can be predicted by means of theo
ical prescriptions based on ordinary mathematical proced
proceeding from the differentiability assumption. When t
condition of time-scale separation is not available, the n
differentiable nature of the microscopic dynamics can
transmitted to the macroscopic level@7#. In the present pape
we show that the key to this understanding is memory effe
in stochastic systems. It is due to memory effects that
macroscopic behavior of stochatic systems contains a m
festation of microscopic dynamics.

The outline of the paper is as follows. Section II is d
voted to the behavior of relaxation in the physical syste
without and with complete memory. In Sec. III we use t
generalized~in the terms of the memory effects! Langevin
and Kramers-Moyal equations to show that, by means of
memory function, the nondifferentiable nature of micr
scopic dynamics of system components can be transmitte
the macroscopic level of description in the form of fraction
derivatives. Note that the memory effects can induce
deredness of macroscopic processes in stochastic system
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Sec. IV we briefly consider the criterion of the relative d
gree of order in the systems. Section V is devoted to the t
fractional diffusion-wave equation concerning the case wh
chaos and order coexist. Finally we compare the process
scribed by the latter equation with the fractional Browni
motion.

II. CLASSIFICATION OF MEMORY EFFECTS

We start from some classification of memory effects. It
based on mathematical properties of the correspond
memory function. Let us consider the integro-different
equation

d f~ t !

dt
52l2E

0

t

K~ t2t8! f ~ t8! dt8, ~1!

wheref is the quantity of interest,K the memory kernel, and
l the parameter. The equation is a typical non-Markov
equation obtained in studying the physical systems coup
to an environment, with environmental degrees of freed
being averaged. The parameterl can be regarded as th
strength of the perturbation induced by the environment
the system.

For a system without memory~ideal Markov system!, the
time dependence of the memory functionK(t2t8) is of the
form

K~ t2t8!5d~ t2t8!, ~2!

where d(t2t8) is the Dirac d function. The absence o
memory means that the convolution function,J(t)5*0

t K(t
2t8) f (t8) dt8, is defined byf (t) at the only instantt. Sub-
stituting Eq.~2! into Eq. ~1! we obtain

d f~ t !

dt
52l2f ~ t !. ~3!

Equation~3! has an exponential solution. If memory effec
are introduced into the system thed function in Eq.~2! turns
into a bell-shaped function, with the width determining
interval t during which f (t) has an effect on the functionJ.
4752 ©2000 The American Physical Society
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In the literature, wide use is made of the Markov appro
mation, which replaces Eq.~1! with the rate equation

d f~ t !

dt
52S l2E

0

`

K~ t8! dt8D f ~ t !. ~4!

The Van Hove limit@8# implies that the limitl→0, t→` is
approached in such a way that the productl2t is kept con-
stant. Using the Van Hove limit makes it possible to repla
the time convolution in Eq.~1! with

d f~ t !

dt
52l2t f ~ t !, ~5!

where

t5E
0

`

dt K~ t !.

The limit l→0 implies that the coupling of the system to th
environment is weak, while the limitt→` means that the
observation time is much larger than the characteristic t
scalet.

On the other hand, in the systems having ideal comp
memory the functionJ is formed over all the course of th
action of the quantityf (t8) up to the instantt with the weight
K(t2t8)5$1,0,t8<t;0,t8.t% ~step function!. In this case
Eq. ~1! is transformed into

d f~ t !

dt
52l2E

0

t

f ~ t8! dt8. ~6!

It has the unique solution,f (t)5 f (0)cos(lt), which does not
decrease att→` in contrast to Eq.~3!.

Relation~1! written in the time domain is not always con
venient because of the convolution~integral overt8). This
can be eliminated by using the Laplace transformation

f̄ ~s!5L@ f ~ t !#5E
0

`

f ~ t ! e2st dt,

f ~ t !5
1

2p i E2 i`

1 i`

f̄ ~s! est ds.

In this case Eq.~1! reduces to the algebraic form

s f̄~s!2 f ~0!52l2K̄~s! f̄ ~s!, ~7!

where the initial condition is taken into account. The Lapla
transform of the kernel~2!, which corresponds to the absen
of memory, yields the constant,K̄(s)51. For ideal memory,
we obtainK̄(s)51/s. Thus, as the ideal complete memo
appears in the system the constant kernel is replaced by
hyperbolic one. It is logical to infer that the fractional int
gration of the ordern, 0,n,1, will interpolate the memory
function between thed function and step function. System
with such a memory function occupy an intermediate po
tion between the two limiting cases and are described in@9#.
They have complete but not ideal memory. This means
the memory manifests itself within all the interval (0,t) but
-
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not at each instantt8. Such a memory function has no cha
acteristic time scale, i.e., the Markov approximation is ina
plicable.

Assume that memory holds only at the points of a Can
set. The problem lies in finding the Laplace transform o
step memory function. To construct a Cantor set, we fi
choose the entire time interval of the lengthT and remove
the central part of the interval leaving two intervals of t
lengthjT ~wherej,1/2). Obviously, to avoid the loss of th
integral memory, the heights of the two resulting bars m
be increased to the value (2jT)21. In the next stage, eac
remaining interval of the lengthjT is subjected to the sam
division process. In each subsequent stagen, this contraction
procedure is performed for the 2n21 stages obtained in the
preceding stage. One can easily see that the memory func
Kn(t) is represented by a set of 2n bars of the height
1/(2j)nT and of the widthjnT. The Laplace image ofKn(t)
is written as

K̄n~s!5
12exp~2sTjn!

sTjn )
k50

n21
11exp~2zjk!

2
,

~8!
z5~12j!Ts.

For n@1 we haveusTjnu!1. As the special investigation
show@9# ~Chap. 5!, the limiting value of the functionK̄n(s),
when the number of divisions generating the Cantor set te
to infinity, becomes

K̄~s!5~sT!2n q@ ln~sT!#, ~9!

wheren5 ln 2/ln(1/j) is the fractal dimension andq@ ln(sT)#
is the periodical function with the period lnj. From the
physical point of view the fractal dimensionn informs us
about the relative amount of states being conserved in
process of interaction and represents a quantitative mea
of memory effects. It is clear from the analysis of the lim
ing case. For an empty Cantor set (n50) the dependence~9!
reduces to the constant, corresponding to the entire abs
of memory ~in the t domain it consists of twod functions
located on the edges of the Cantor set!. The limiting value of
the similarity parameterj51/2 yields the dimensionn51,
which corresponds to the complete memory. The result~9! is
correct for anysT from the interval

1/~12j!<usTu,`

or for the time variable located in the interval

0,t/T,1.

Averaging the functionq„ln(sT)… in Eq. ~9! over the period
ln j ~see the details in@9#! and taking the inverse Laplac
transform ofJ̄(s), we obtain the temporal fractional integra

J~ t !.
1

G~n!
E

0

t

~ t2t8!n21 f ~ t8! dt8,

whereG(n) is the Gamma function~see the Appendix!. The
averaging procedure converts the discrete fractal densityrn
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4754 PRE 61A. A. STANISLAVSKY
51/(2j)nT to its continuous value,r(t)}tn21. Now the ker-
nel K(t2t8) in Eq. ~1! becomes

K~ t2t8!;
1

G~n!
~ t2t8!n21,

indicating the presence of the fractional integral. The integ
representation of Eq.~1! is equivalent to a differential equa
tion of the fractional order. The above result~9! can be gen-
eralized to the case of an arbitrary numberj of elementary
blocks participating in the construction of a Cantor set.
turns out @9# that the result~9! remains true given thatn
5 ln j/ln(1/j). The transition from the regular Cantor sets
the case, when the parameterj is random in each stage o
constructing a Cantor set, leads to the same result.

Thus, the systems with residual memory haveK̄(s)
.s2n, where the exponent value, 0<n<1, determines the
extent of memory preservation. Substituting it into Eq.~7!
~let all constants be contained inl2) and using the inverse
Laplace transformation, the solution of Eq.~1! takes the form

f ~ t !5 f ~0! En11~2l2tn11!,

where Ea(z)5(k50
` zk/G(ak11) is the one-paramete

Mittag-Leffler function@10#. In the particular casesn50 and
n51 we have

E1~2z!5e2z, E2~2z2!5cosz.

For 0,n,1 the quantityf (t) has an algebraic decay ast
→`. Therefore memory effects can essentially change
character of relaxation. The above constructions are not o
pure theoretical, but reflect the experimental situation. In
connection it should be mentioned that, for example, the
laxation curves of the experiments@11# on glassy materia
with the remarkable accuracy show the algebraic de
rather than the standard exponential relaxation. The pow
law relaxation can be expected to be a common featur
dynamical systems in a transition region between the
chastic and regular motion~supercooled liquids, glasses, an
polymer materials! @12#.

III. QUALITATIVE KINETIC ANALYSIS
OF RANDOM PROCESSES WITH MEMORY

It is well known @13# that the generalized Langevin equ
tion is of the form

dv
dt

52gE
0

t

M ~ t2t8! v~ t8! dt81L~ t !,

wherev is the particle’s velocity,M some memory function
and L the noise term. If the valuev(t) is observed with a
time resolutiondt@tc , wheretc is the correlation time of
forces producing the random particle motion, the Mark
approximation is applicable, so that we obtain the ordin
Langevin equation

dv
dt

52g v~ t !1L~ t !.
l

t
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In the case of complete but not ideal memory the generali
Langevin equation becomes a fractional differential eq
tion. The evolution of the probability distribution associat
with the velocity in the fractional Langevin equation is d
scribed by the fractional partial differential equation in t
phase space for the phenomenon@14#.

Consider the probability distributionP(x,t) to find a par-
ticle at pointx and timet. The normalization condition is

E
2`

`

P~x,t ! dx51. ~10!

A broad class of various stochastic processes is given by
Chapman-Kolmogorov equation,

]P~x,t !

]t
5E M ~x,t;x8,t8! P~x8,t8! dx8~ t8!, ~11!

where the memory functionM (x,t;x8,t8) accounts for the
probability distributionP(x8,t8) in the previous instants o
time t8,t @15#. The expansion of the kernelM in terms of
the differencex2x8 yields the generalized~in the terms of
the memory effects! Kramers-Moyal equation

]P~x,t !

]t
5 (

n51

`

~2¹!nE
2`

t

D (n)~x,t2t8! P~x,t8! dt8,

~12!

where¹[]/]x and the coefficientsD (n) are the moments o
the memory functionM divided by n!. In the case of Mar-
kovian processes the moments are proportional tod(t2t8)
and the integration in Eq.~12! vanishes. It is relevant to
remark thatt in Eq. ~12! should be treated in the ‘‘kinetic’’
but not ‘‘microscopic’’ sense. The Markov approximatio
~the Van Hove method@8#! ignores memory effects in som
sense, but such an approach is not always useful. For
ample, the statistical theory describing transport propertie
turbulent plasma leads to the conclusion that the turbule
is of a subdiffusive nature and that the diffusivity conside
ably decreases. Therefore, memory effects can be impo
for explaining the dependence of the transport propertie
saturated turbulence on the eigenfrequency of the unst
mode in the case of instability driven by the gradients in
coordinate space@16#.

Using Eq.~12! one can write the equation

]P~x,t !

]t
5 (

n51

`

~21!n
1

n!

]n

]xn FKn~x!

3E
0

t

D~ t2t8! P~x,t8! dt8G , ~13!

whereKn(x) are arbitrary functions. The application of th
Laplace transform to Eq.~13! @with the initial values given
on the whole real axis in the formP(x,0)] leads to the fol-
lowing nonhomogeneous differential equation:

sP̄~x,s!2P~x,0!5D̄~s! (
n51

`

~21!n
1

n!

]n

]xn
@Kn~x! P̄~x,s!#.
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Consider the case when memory is complete but not id
~see the previous paragraph!. Then we come to the following
equation:

sP̄~x,s!2P~x,0!5
D1

sn (
n51

`

~21!n
1

n!

]n

]xn
@Kn~x! P̄~x,s!#,

~14!

whereD1 is the positive constant. Using the Caputo’s de
nition ~A6! of the fractional derivative~see@17# and the Ap-
pendix! and its Laplace transform~A8!, the study of Eq.~13!
for the case of complete but not ideal memory leads to
fractional generalization of the Kramers-Moyal equation:

]2bP~x,t !

]t2b
5 (

n51

`

~21!n
1

n!

]n

]xn
@Kn~x! P~x,t !#. ~15!

If K1(x), K2(x) exist ~nonzero! andKn(x)50 for n>3, Eq.
~15! is a fractional generalization of the Fokker-Planc
Kolmogorov equation@18#.

Observe some typical features of the fractional Fokk
Planck-Kolmogorov~FFPK! equation. Ifb51/2 (n50) it is
transformed into the conventional diffusion equation. T
form is equivalent to the complete absence of memory.
b51 (n51) we have the conventional wave equation, i.
the process with complete memory. The equations cont
ing derivatives of higher than second order with respec
time cannot exist in nature: a random process cannot sp
faster than a collection of deterministic trajectories.b50
defines the case of localization, which is the lowest limit
any diffusion process. Hence the physical bounds onb are
given by 0<b<1 @from Eq. ~14! it follows that 1/2<$b
5(n11)/2%<1 because 0<n<1]. As is well known from
statistical physics, one of the simple criteria of irreversibil
is whether or not equations are invariant in respect to t
reversal (t→2 t). The specific character of the process
described by fractional time derivatives is that for the sub
tution

~2t !2b5t2b$cos~2bp!1 i sin~2bp!%

the relative amount of system states is conserved, and
other one corresponds to irreversible losses@9#. This allows
us to suppose that for 0,b,1 the FFPK equation describe
the random processes with memory.

IV. CRITERION FOR THE RELATIVE DEGREE
OF ORDER

The FFPK equation is an integro-differential equation
partial derivatives with varying coefficients, so in gene
one cannot analytically find its solution. For the stationa
systems, the probability distribution does not depend on t
@(]/]t)P(x,t)50#, and their analysis leads to the Gibbs d
tribution, the cornerstone of statistical physics. A natural
tension of the stationary analysis is the study of nonstat
ary systems in the self-similar regime, when the depende
on two argumentsx,t is expressed in terms of a single va
abley5x/a(t):

P~x,t !5@a~ t !#a w~y!, ~16!
al
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where the functionsa(t),w(y) and the exponenta are to be
defined. Mathematically, the probability distribution~16! is a
homogeneous function of ordera. Physically, the transition
to the new variabley5x/a corresponds to scaling the sto
chastic quantityx on an arbitrary scalea(t). It is well known
@19# that such a feature is displayed by fractal objects. If
domain of definition of the phase space for the stocha
system is a fractal set, its dimensionD lies between 2~the
conventional phase space! and 0~the point of equilibrium!.

In order to find the exponenta, we substitute the function
~16! into the normalization condition~10!, getting as a result

@a~ t !#2(11a)5E
2`

`

w~y! dy.

The left-hand side of this equation depends on the tim
whereas the right-hand side does not. Hence, it follows
a521. The form of the functionw(y) can only be found
from the FFPK equation.

Of different macroscopic functions, only the entropyS
possesses a combination of properties that allow one to u
as a measure of uncertainty~chaos! in the statistical descrip-
tion of the processes in macroscopic systems@3#,

S~ t !52E
2`

`

P~x,t ! log@P~x,t !# dx1S0

52E
2`

`

w~y! log@w~y!# dy1 log@a~ t !#1S0 .

~17!

Define the mean value ofx2 as

^x2&5a2~ t !E
2`

`

y2 w~y! dy5Ba2~ t !.

Using the above relation we can write expression~17! in the
form

S~ t !52E
2`

`

w~y! log@w~y!# dy20.5 logB

10.5 loĝ x2&1S0 . ~18!

The entropyS(t) depends on time only on account of^x2&.
To consider the evolution of stationary states by means
slowly varying controlling parameters~they can be found
among the parameters characterizing the stationary state! one
can use the S theorem@20# as a criterion of the relative
degree of order in various states which reveals for w
states the degree of order is higher. It should be noted
the S-theorem considers only the stationary states using
mal equilibrium as the reference point for the degree
chaos. Att→` the probability distribution becomes negl
gible and it is necessary to renormalize the entropy,

S̃5S~ t !20.5 loĝ x2&. ~19!

The procedure is equivalent to fixing the value^x2& for any
value of a chosen controlling parameter~by the way, one of
conditions of the S theorem is the equality condition for t
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4756 PRE 61A. A. STANISLAVSKY
average effective Hamiltonian functions in different states
interest!, since this influences only the reference point
entropy and does not affect the renormalized entropy dif
ences between different states. Although the value^x2& de-
pends on the controlling parameter~as well as ont), the
fixing of the former does not mean fixing the latter. No
using the renormalized entropy difference as a measur
the relative degree of order, one can study the evolution
system states in the space of controlling parameters.

V. SOME EXAMPLES

One of the simple cases of the FFPK equation is the t
fractional diffusion-wave~TFDW! equation

]2b

]t2b
P~x,t !5D

]2

]x2
P~x,t !, ~20!

whereD is a positive constant. Its fundamental solutions
case of the basic Cauchy and Signalling problems are
known @21#. Let us take the pointP(j,0)5d(j) as an initial
position of a particle. If 1/2,b<1, it is necessary to specif
the initial value of the first order time derivativ
(]/]t)P(x,t)u t501, since in this case two linearly indepen
dent solutions are to be determined. To ensure the cont
ous dependence of our solution on the parameterb in the
transition from 2b512 to 2b511, we assume
(]/]t)P(x,t)u t50150. Then Eq.~20! has the following so-
lution:

P~x,t !5
1

2ADtb
M S uxu

ADtb
;b D , ~21!

where

M ~z;b!5
1

2p i EHa
es2zsb ds

s12b
, 0,b,1

whereHa denotes the Hankel path@a contour that begins a
s52`2 ia (a.0), encircles the branch cut that lies alon
the negative real axis, and ends up ats52`1 ib (b.0)].

Mainardi @21# developed the functionM (z;b) as a series

M ~z;b!5 (
n50

`
~21!n zn

n! G@2bn1~12b!#

and showed that it is a particular case of the Wright funct

W~z;l,m!5 (
n50

`
zn

n! G~ln1m!
5

1

2p i EHa
es1zsl ds

sm
,

wherel.21, m.0 @10#. It is non-negative for any 0,b
<1 and satisfies the normalization condition*0

`M (z;b) dz
51. Clearly, these properties are also characteristic to
probability distribution mentioned above. Forb51 the func-
tion is the Diracd function. Forb51/2 we have the Gauss
ian functionM (z;1/2)5exp(2z2/4)/Ap. For 0,b<1/2 the
function M (z;b) (z>0) decreases monotonically, while fo
1/2,b,1 it first increases and then decreases, exhibiting
maximum value at a certain pointzmax. The expression~21!
f
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describes the particle evolution in the space-time and is
Green function of the TFDW equation. Averagingx2 we
obtain

^x2&5E
2`

`

x2 P~x,t ! dj5
2 D t2b

G~2b11!
. ~22!

The probability distribution~21! obeys the following scaling
relations:

P~ x̂5bbx, t̂5bt!5b2b P~x,t !

for an arbitrary parameterb.
Note that if in ~21! b51/2 we obtain the conventiona

Brownian motion ~purely random process!. For b51 the
particle performs ballistic motion~purely deterministic pro-
cess!. Next we are going to show that 0,b,1 is the special
case when chaos and ordered motion coexist.

Now let us calculate the entropy~18! in this case

S~ t !50.510.5 log2~^x2&!1S~b!. ~23!

As a controling parameter we chooseb and will consider the
evolution of the sequence of states corresponding to diffe
values of the controlling parameter. One should keep in m
that limt→`^j2&5`. For this reason we must renormalize th
expression~23! according to Eq.~19!. Then the relative de-
gree of order can be estimated as

S~b!50.5 log2G~2b11!2E
0

`

M ~z,b! log2@M ~z,b!# dz.

~24!

The dependenceS(b) is represented in Fig. 1. It reaches th
maximum atbc51/2. We regard this state as a state
physical chaos~the correctness of this assumption will ha
to be verified!. The smooth decrease of the value~24! is a
quantitative measure of the increase in the degree of or
Since the inequalityS(1/2).S(bÞ1/2) is satisfied,b→ 1

2

1Db is the transition from a less ordered state~physical
chaos! to a more ordered state. This is an indication that
have found the corresponding controlling parameter, and
evolution of the system in the space of the controlling p
rameter is associated with self-organization. The conclus
is valid because forb51 we have the purely deterministi
state which may be taken by a reference point of the deg
of order. Some orderedness also happens to be the cas
0,b,1/2. Although here we do not come to complete o
der, in some sense the orderedness is higher than fobc
51/2. Thus the valueb can be adopted as a measure
relative degree of order. It is useful to mention some parti
lar values, limb→0S(b)51/ln 2 and S(1/2)50.5(1
1 ln p)/ln 2. To sum up, the process considered above is
special case when chaos and ordered motion coexist,
value b characterizing the relative degree of order in t
process. Next we will compare this process with the fra
tional Brownian motion.

In many physical systems the Gaussian distribution i
straightforward consequence of the central limit theor
which makes it possible to consider completely random p
cesses. Hurst found a set of statistical tools to examine
data which does not represent a purely random struc
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FIG. 1. The dependence of the valueS(b) on
the controlling parameterb.
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though standard statistical methods do not show any corr
tion between the observations@22#. Using his rescaled rang
analysis one can extract meaningful information about
‘‘memory’’ of a time series. If the observations are not ind
pendent, each carries a ‘‘memory’’ of events which preced
it. Mandelbrot and Van Ness@23# suggested the so-calle
fractional Brownian motion~the fractional integral of the
white Gaussian noise! as a model reflecting the phenomeno
The fractional Brownian motion has the following probab
ity distribution:

P~x;t !5
1

A2p K tb
expS 2

x2

4K t2bD . ~25!

Its averagê x2& is proportional tot2b as in the case of the
process~21!. Then expression~18! is of the form

S~ t !50.5$ ln@2pD̂~ t !#11%, ~26!

where D̂(t)52K t2b. Renormalizing it in accordance wit
Eq. ~19! we obtain S̃50.5(ln 2p11). In other words, the
renormalized entropy does not depend onb, i.e., the frac-
tional Brownian motions with various Hurst exponents a
almost the same in respect to the relative degree of ch
This example differs radically from the foregoing one: in t
model of fractional Brownian motion~25! the rise of or-
deredness with changing the Hurst exponent is imposs
for the simple reason that the shape of the probability dis
bution does not change in the space of the controling par
eter @compare with the process~21!#. The numerical model-
ing verifies this conclusion@24#.

VI. CONCLUDING REMARKS

The fractional calculus formalism generalizing differe
tiation and integration to fractional orders has a long hist
@25#, but recently the interpretative approach opened br
perspectives in physical and engineering applicati
@12,14,18#. The above consideration shows that fraction
la-

e
-
d

.

s.

le
i-

-

y
d
s
l

calculus provides a bridge between purely deterministic p
cesses and purely stochastic ones. The fact is of interest
own right because chaos and order in Nature coexist.
cording to Boltzmann and Gibbs, in closed statistical s
tems, evolution in time results in the equilibrium state whi
is the most chaotic~or, in other words, purely random!. The
element motions in closed systems are independent of e
other. In open systems the environment induces memory
fects, so that the macroscopic behavior of such systems
tains a manifestation of microscopic dynamics. If micr
scopic motion in the systems is very complex or random,
complete memory transmits the complex behavior to mac
scopic evolution of the system as a whole. It is worth not
ing that the model~used by us! of memory at the points of a
Cantor set is not too exotic. It implies that memory is intri
sic to all time scales~in such a way that the correspondin
memory function has no characteristic scales! of the phase
space of a system given that the number of divisions ge
ating a Cantor set tends to infinity. In a different way, t
largest of time scales would be in the system as in the cas
the Markov approximation. We have demonstrated that
relationship between the Cantor set and the fractional in
gral reduces the generalized~in the terms of the memory
effects! Langevin, Kramers-Moyal, Fokker-Planck
Kolmogorov equations to their fractional form. The fra
tional generalizations turn out to be useful for studying t
random processes with residual memory~without any char-
acteristic time scale!.

The process described by the time fractional diffusio
wave equation is an example clearly showing that for ch
and ordered motion in a system to coexist, its probabi
distribution must undergo qualitative changes in the funct
form with slowly varying the system parameters. In our co
sideration the parameter was the relative amount of the
tem states having orderedness during the system evolu
The evolution in the space of the parameter looks like
stochastic analog of bifurcation connected with the ph
transition ‘‘order-disorder.’’ For 0,b,1/2 the probability
distribution has one sharp maximum atzmax50. If the pa-
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rameter attains the valueb51/2 the function becomes fla
Then for 1/2,b,1 the probability function takes the form
with two maxima symmetrical in respect to the origin
coordinates~where the function minimum is found!. When
the parameterb goes towards 1, the probability to find
particle between the maxima is becoming less and lesser
the function peaks get narrower and higher. Forb51 the
probability distribution is transformed in twod functions. As
a result, this system state becomes completely ordered.
fractional Brownian motion has not the possibility. Th
Hurst exponent~which is the only parameter of the proces!
influences the asymtotic behavior of its autocorrelation fu
tion, but the process remains Gaussian anyhow.
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APPENDIX

In this appendix we consider briefly the basic formu
used in the fractional calculus introduced in the text. T
starting point is the introduction of the causal functionFl(t)
defined as

Fl~ t !ªH tl21

G~l!
, t>0,

0, t,0,

lPC,

whose Laplace transform is

L@Fl~ t !#5F̄l~s!ªE
0

1`

e2st Fl~ t ! dt5
1

sl
,

~A1!
Rel.0, Res.0.

The function satisfies the composition rule

Fl~ t !* Fm~ t !5E
0

t

Fl~t! Fm~ t2t! dt5Fl1m~ t !,

Rel.0, Rem.0.

The integral of ordern of a causal functionf (t) can be
expressed by the convolution betweenFn and f

I nf ~ t !5E
0

t

dt1E
0

t1
dt2•••E

0

tn22
dtn21E

0

tn21
f ~t! dt

5
1

~n21!! E0

t

f ~t! ~ t2t!n21 dt

5Fn~ t !* f ~ t !,

basing on the well known formula that reduces the calcu
tion of then-fold primitive to a single integral. Forl.0, the
function Fl(t) is locally absolutely integrable in 0<t
,1`. To extend the above formula from positive integ
nd

he

-

-

e

-

r

values of the index to any positive real values, let us defi
the fractional integral of ordera.0,

I a f ~ t !ª
1

G~a!
E

0

t

~ t2t!a21 f ~t! dt5Fa~ t !* f ~ t !.

~A2!

The Laplace transform of the fractional integral is t
straigthforward generalization of the ordinary casea5n

L@ I a f ~ t !#5
f̄ ~s!

sa
. ~A3!

For l<0, the causal functionFl(t) is not locally abso-
lutely integrable and consequently the integral

1

G~2a!
E

0

t f ~t!

~ t2t!11a
dt5F2a~ t !* f ~ t !, aPR¿

~A4!

is in general divergent. Nevertheless, ifl52n (n
50,1, . . . ), thefunctionsFl(t) can be treated in the frame
work of generalized functions@26#. In this case it reduces to
the n derivative ~in the generalized sense! of the Dirac d
function

F2n~ t !ªd (n)~ t !.

Then formally the derivative of ordern of a causal function
f (t) can be obtained by the convolution betweenF2n(t) and
f

dn

dtn
f ~ t !ªE

0

t

f ~t! d (n)~ t2t! dt5F2n~ t !* f ~ t !, t.0.

The limit casea50 defines the identity operator

E
0

t

f ~t! d~ t2t! dt5F0~ t !* f ~ t !5 f ~ t !.

In order to obtain a definition for the fractional derivativ
~with nonintegera) that is valid for classical functions, we
have to regularize the divergent integral~A4! in some way.
As a consequence we arrive at two alternative regular d
nitions for the fractional derivativeDa, which read forn
21,a,n

Dc
a f ~ t !5

1

G~n2a!

dn

dtn
E

0

t f ~t!

~ t2t!a112n
dt, ~A5!

Dr
a f ~ t !5

da

dta
f ~ t !5

1

G~n2a!
E

0

t f (n)~t!

~ t2t!a112n
dt.

~A6!

The difference between the two definitions lies in

Dc
a f ~ t !5Dr

a f ~ t !1 (
k50

n21

f (k)~01! F (k2a11)~ t !.
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The defintion~A5! is the most commonly adopted in mat
ematically oriented papers and books@25#. The definition
~A6!, introduced by Caputo@17#, is more restrictive than Eq
~A5! because it requires the functionf (t) to be n differen-
tiable. As it was shown in this paper, the latter definitions
more suitable for the problems considered above where
conventional initial conditions are expressed in terms of
teger derivatives. Using the classical technique of Lapl
transform

LF dn

dxn
f ~ t !G5snf̄ ~s!2 (

k50

n21

sn212kf (k)~01!, nPN

~A7!
nd

il-
in

d
le
e
he
-
e

and from Eqs.~A1! and ~A6! we get

LF da

dta
f ~ t !G5sa f̄ ~s!2 (

k50

n21

sa212kf (k)~01!,

~A8!

n21,a,n,

first stated by Caputo@17#. It is worth noticing that according
to the definition~A5! the fractional derivative of a constan
does not vanish ifa is not an integer, while according t
defintion ~A6! it vanishes for anya.
re
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