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Memory effects and macroscopic manifestation of randomness
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It is shown that due to memory effects the complex behavior of components in a stochastic system can be
transmitted to macroscopic evolution of the system as a whole. Within the Markov approximation widely used
in ordinary statistical mechanics, memory effects are neglected. As a result, a time-scale separation between
the macroscopic and the microscopic level of description exists, the macroscopic differential picture is not a
consequence of microscopic nondifferentiable dynamics. On the other hand, the presence of complete memory
in a system means that all its components have the same behavior. If the memory function has no characteristic
time scales, the correct description of the macroscopic evolution of such systems has to be in terms of the
fractional calculus.

PACS numbd(s): 05.40—a, 05.45-a, 05.60--k

[. INTRODUCTION Sec. IV we briefly consider the criterion of the relative de-
gree of order in the systems. Section V is devoted to the time
The connection between microscopic dynamics of compofractional diffusion-wave equation concerning the case when
nents in stochastic systems and macroscopic description éhaos and order coexist. Finally we compare the process de-
their behavior as a whole is very attractive in statistical physScribed by the latter equation with the fractional Brownian
ics [1-3]. From the point of view of a single trajectory, the motion.
path of a Brownian particle is continuous everywhere, but is

nowhere differentiabl¢4]. Such a path is not described by Il. CLASSIFICATION OF MEMORY EFFECTS
an analytical function. In the theory of Brownian motion S .
formulated by Langevif5] the velocity of the Brownian We start from some classification of memory effects. It is

particle was proved to be discontinuo[&]. The differen- Pased on mathematical properties of the corresponding

tiable nature of the macroscopic picture of Brownian motion€mory function. Let us consider the integro-differential

is due to the key role of the central limit theoreffluctua- ~ €duation

tions of the microscopic quantities are independent of each df(t) .

othep. This means that the microscopic and macroscopic _:_hzf K(t—t') f(t') dt’, (1)

levels of description of the process are separated in the time dt

scale, and memory of the nondifferentiable character peculiar

to the microscopic dynamics is lost in the long time limit. wheref is the quantity of interesK the memory kernel, and

Consequently, the results of observing the motion of an ens the parameter. The equation is a typical non-Markovian

semble of trajectories can be predicted by means of theoreequation obtained in studying the physical systems coupled

ical prescriptions based on ordinary mathematical proceduré® an environment, with environmental degrees of freedom

proceeding from the differentiability assumption. When thebeing averaged. The parametercan be regarded as the

condition of time-scale separation is not available, the nonstrength of the perturbation induced by the environment of

differentiable nature of the microscopic dynamics can beghe system.

transmitted to the macroscopic ley@l. In the present paper ~ For a system without memoiydeal Markov system the

we show that the key to this understanding is memory effect§me dependence of the memory functikit—t’) is of the

in stochastic systems. It is due to memory effects that théorm

macroscopic behavior of stochatic systems contains a mani-

festation of microscopic dynamics. K(t=t")=6(t—t"), 2

The outline of the paper is as follows. Section Il is de-

voted to the behavior of relaxation in the physical systemgvhere §(t—t’) is the Dirac 6 function. The absence of

without and with complete memory. In Sec. Il we use thememory means that the convolution functial{t) = [ oK (t

generalized(in the terms of the memory effegtbangevin ~ —t') f(t") dt’, is defined byf(t) at the only instant. Sub-

and Kramers-Moyal equations to show that, by means of thétituting Eq.(2) into Eg. (1) we obtain

memory function, the nondifferentiable nature of micro-

scopic dynamics of system components can be transmitted to df(t)

the macroscopic level of description in the form of fractional Tdt

derivatives. Note that the memory effects can induce or-

deredness of macroscopic processes in stochastic systemsHguation(3) has an exponential solution. If memory effects
are introduced into the system thdunction in Eq.(2) turns
into a bell-shaped function, with the width determining an

*Electronic address: alexstan@ira.kharkov.ua interval 7 during whichf(t) has an effect on the functioh

=—N\2f(t). 3
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In the literature, wide use is made of the Markov approxi-not at each instartt . Such a memory function has no char-

mation, which replaces E@l) with the rate equation acteristic time scale, i.e., the Markov approximation is inap-
plicable.

df(t) ——[x2 [Tk at e @) Assume that memory holds only at the points of a Cantor

dt 0 ( (). set. The problem lies in finding the Laplace transform of a

step memory function. To construct a Cantor set, we first
The Van Hove limif 8] implies that the limit\ —0,t—= is  choose the entire time interval of the lengthand remove
approached in such a way that the produgt is kept con-  the central part of the interval leaving two intervals of the
stant. Using the Van Hove limit makes it possible to replacdengthéT (whereé< 1/2). Obviously, to avoid the loss of the
the time convolution in Eq(l) with integral memory, the heights of the two resulting bars must
be increased to the value §2) 1. In the next stage, each
remaining interval of the lengthT is subjected to the same
division process. In each subsequent staghis contraction
procedure is performed for the'2! stages obtained in the
where preceding stage. One can easily see that the memory function
Kn(t) is represented by a set of" 2bars of the height
1/(28€)"T and of the widthé"T. The Laplace image df ,(t)

df(t)
5= N, 5)

= | dtk().
JO (t)

is written as
The limit A\ — 0 implies that the coupling of the system to the — 1—exp — sTEM 1+exp( z£9)
environment is weak, while the limit—c« means that the Kn(s)= - | :
. . . o STE k=0
observation time is much larger than the characteristic time ®
ler.
Seeer 2=(1-§)Ts,

On the other hand, in the systems having ideal complete

memory the functiond is formed over all the course of the . N . S
action of the quantity(t") up to the instant with the weight For n>1 we have|sT¢"|<1. As the special investigations

K(t—t")={1,0<t’'<t;0t'>t} (step functio. In this case show[9] (Chap. 5, the limiting value of the functiofi,(s),
Eq. (1) is transformed into when the number of divisions generating the Cantor set tends
to infinity, becomes

m=—>\thf(t’)dt’ (6) P -
dt 0 ' K(s)=(sT)""g[In(sT)], 9)

wherev=In 2/In(1/¢) is the fractal dimension angl In(sT)]
is the periodical function with the period § From the
physical point of view the fractal dimension informs us
about the relative amount of states being conserved in the
process of interaction and represents a quantitative measure
of memory effects. It is clear from the analysis of the limit-
_ o ing case. For an empty Cantor set0) the dependend®)
f(5)=ﬁ[f(t)]=f f(t) e s'dt, reduces to the constant, corresponding to the entire absence
0 of memory (in the t domain it consists of twaS functions
1 [is located on the edges of the Cantor)s&he limiting value of
f(t)==— f_(s) estds. the similarity parameteé=1/2 yields the dimensiomw=1,
—joo which corresponds to the complete memory. The reSlis
correct for anysT from the interval

It has the unique solutiori(t) = f(0)cos{t), which does not
decrease dat— o0 in contrast to Eq(3).

Relation(1) written in the time domain is not always con-
venient because of the convolutigmtegral overt’). This
can be eliminated by using the Laplace transformation

In this case Eq(1) reduces to the algebraic form
o o U(1-§&)<|sT|<
s f(s)— f(0)=—\2K(s) f(s), (7)
or for the time variable located in the interval
where the initial condition is taken into account. The Laplace
transform of the kerngR), which corresponds to the absence o<t/T<1.

of memory, yields the constanf(s) =1. For ideal memory, . _ . _
Averaging the functiormg(In(sT)) in Eqg. (9) over the period

we obtainf(s) 1/s. Thus, as the ideal complete memory |
appears in the system the constant kernel is replaced by thn ¢ (see the details ii9]) and taking the inverse Laplace

hyperbolic one. It is logical to infer that the fractional inte- fransform ofJ(s), we obtain the temporal fractional integral
gration of the ordew, 0<v<1, will interpolate the memory

function between thé function and step function. Systems Jt)=——

with such a memory function occupy an intermediate posi- I(v)
tion between the two limiting cases and are describd@jn

They have complete but not ideal memory. This means thawherel(v) is the Gamma functiofsee the Appendix The
the memory manifests itself within all the interval {)0put  averaging procedure converts the discrete fractal depsgity

f(t—t yoLi(t) dt’,
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=1/(2¢)"T to its continuous valugy(t)<t” 1. Now the ker-  In the case of complete but not ideal memory the generalized
nel K(t—t") in Eq. (1) becomes Langevin equation becomes a fractional differential equa-
tion. The evolution of the probability distribution associated
) B with the velocity in the fractional Langevin equation is de-
K(t—t )Nm(t_t )" scribed by the fractional partial differential equation in the
phase space for the phenomeriad].
indicating the presence of the fractional integral. The integral Consider the probability distributioR(x,t) to find a par-
representation of Eq1) is equivalent to a differential equa- ticle at pointx and timet. The normalization condition is
tion of the fractional order. The above res(#) can be gen-
eralized to .th.e c.ase.of an arbitrary numﬁ)em‘ elementary f“ P(x,t) dx=1. (10)
blocks participating in the construction of a Cantor set. It o
turns out[9] that the result(9) remains true given that
=Inj/In(1/§). The transition from the regular Cantor sets to A broad class of various stochastic processes is given by the
the case, when the parametgis random in each stage of Chapman-Kolmogorov equation,
constructing a Cantor set, leads to the same result.
Thus, the systems with residual memory hak¢s) IP(xt) o o
=s~”, where the exponent valueOv<1, determines the ot _f MOGEXTE) POCE) dx (L), (11)
extent of memory preservation. Substituting it into Ed)
(let all constants be contained Nf) and using the inverse where the memory functioM(x,t;x’,t") accounts for the
Laplace transformation, the solution of Ed) takes the form  probability distributionP(x’,t") in the previous instants of
time t’ <t [15]. The expansion of the kern® in terms of
f(t)=F(0) E,+1(=N?t""h), the differencex—x’ yields the generalize¢in the terms of
the memory effecisKramers-Moyal equation
where E (2)=3;_oZ"T'(ak+1) is the one-parameter
Mittag-Leffler function[10]. In the particular cases=0 and AP(x,t)
v=1 we have ot

= }_}l (—V)“Jt D™(x,t—t") P(x,t") dt’,

Ei(—z)=e"% E,(—z?)=cosz (12)

_ _ whereV=4/9x and the coefficient® (™ are the moments of
For 0<v<1 the quantityf(t) has an algebraic decay &8s o memory functiorM divided byn!. In the case of Mar-

—oo0, Therefore memory effects can essent_ially change thgian processes the moments are proportionad(to-t')
character of relaxation. The above constructions are not Onlé{nd the integration in Eq(12) vanishes. It is relevant to

pure theoretical, but reflect the experimental situation. In thisamark thatt in Eq. (12) should be treated in the
connection it should be mentioned that, for example, the reg + not “microscopic” sense. The Markov approximation

Iaxation curves of the experimenf$l] on glassy ma}terial (the Van Hove methofi8]) ignores memory effects in some
with the remarkable accuracy show the algebraic decakense hut such an approach is not always useful. For ex-
rather than the standard exponential relaxation. The powelyyje the statistical theory describing transport properties of

law relaxation can be expected to be a common feature qf, i jent plasma leads to the conclusion that the turbulence
dynamical systems in a transition region between the stox

X ; o 1s of a subdiffusive nature and that the diffusivity consider-
chastic and regular motiofsupercooled liquids, glasses, and gp\y gecreases. Therefore, memory effects can be important
polymer materials[12].

for explaining the dependence of the transport properties of

saturated turbulence on the eigenfrequency of the unstable
. QUALITATIVE KINETIC ANALYSIS mode in the case of instability driven by the gradients in the

OF RANDOM PROCESSES WITH MEMORY coordinate spacfl6].

Using Eq.(12) one can write the equation

“kinetic”

It is well known[13] that the generalized Langevin equa-

tion is of the form JP(X,t)_i x n ‘
dv t PR = )n'7 olX)
—=—yf M(t—t") v(t") dt’ +L(t),
dt 0 t
XJ D(t—t’)P(x,t’)dt’}, (13
0

whereuv is the particle’s velocityM some memory function,

and L the noise term. If the value(t) is observed with a . . .
time resolutiondt> 7., where 7. is the correlation time of whereK,(x) are arbitrary functions. The application of the

forces producing the random particle motion, the Markov-@Place transform to Eq13) [with the initial values given

approximation is applicable, so that we obtain the ordinanP" the whole real axis in the fori(x,0)] Iegd§ to the fol-
Langevin equation lowing nonhomogeneous differential equation:

dv

_ _ 1 4" _
Frinie yu(t)+L(1). sP(x,s) = P(x,0)=D(s) nzl (—1)nm Q[Kn(x) P(x,s)].
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Consider the case when memory is complete but not idealhere the functionsa(t),¢(y) and the exponent are to be
(see the previous paragrapfithen we come to the following defined. Mathematically, the probability distributi¢6) is a
equation: homogeneous function of order. Physically, the transition
to the new variabley=x/a corresponds to scaling the sto-
— nl chastic quantity on an arbitrary scala(t). It is well known
sP(x,5)—P(x,00= 2 (=" [Kn(x) P(x,9)], [19] that such a feature is displayed by fractal objects. If the
(14) domain of definition of the phase space for the stochastic
system is a fractal set, its dimensi@nlies between Athe
whereD; is the positive constant. Using the Caputo’s defi-conventional phase spgcand 0(the point of equilibriun.
nition (A6) of the fractional derivativésee[17] and the Ap- In order to find the exponent, we substitute the function
pendi® and its Laplace transforfA8), the study of Eq(13)  (16) into the normalization conditiofiL0), getting as a result
for the case of complete but not ideal memory leads to the

fractional generalization of the Kramers-Moyal equation: [a(t)] 9= f_ o(y) dy.
PP, < " . . . .
e _ = 2 1)” [K (x) P(x,t)]. (15  The left-hand side of this equation depends on the time,
n=1

whereas the right-hand side does not. Hence, it follows that
a=—1. The form of the functionp(y) can only be found
from the FFPK equation.

Of different macroscopic functions, only the entrofy
possesses a combination of properties that allow one to use it
‘as a measure of uncertainiyhaos in the statistical descrip-
tion of the processes in macroscopic syst¢fis

If Ki(x), Ky(x) exist(nonzerg andK,(x) =0 forn=3, Eq.
(15) is a fractional generalization of the Fokker-Planck-
Kolmogorov equatiorj18].

Observe some typical features of the fractional Fokker-
Planck-KolmogoroWFFPK) equation. If3=1/2 (v=0) itis
transformed into the conventional diffusion equation. This
form is equivalent to the complete absence of memory. For 0
B=1 (v=1) we have the conventional wave equation, i.e.,  S(t)= —f P(x,t) log[ P(x,t)] dx+ Sy
the process with complete memory. The equations contain- o
ing derivatives of higher than second order with respect to w0
time cannot exist in nature: a random process cannot spread = —f e(y) logle(y)]dy+logla(t)]+Sp.
faster than a collection of deterministic trajectorigs=0 o
defines the case of localization, which is the lowest limit of (17
any diffusion process. Hence the physical boundsBoare
given by 0<B<1 [from Eq. (14 it follows that 1/2<{g  Define the mean value of as
=(v+1)/2<1 because &v=<1]. As is well known from
_statistical physics, one o_f the sim_ple criteriz_a of irreversibil_ity (x2)=aX(t) fw y2 o(y) dy=Ba(t).
is whether or not equations are invariant in respect to time —
reversal {(— — t). The specific character of the processes
described by fractional time derivatives is that for the substiUsing the above relation we can write expressibn in the

tution form
—t)2P=t2B{cog23m) +i sin(2 ”
(~07=tHcod2fm) +i sin2 ) st=- | et loge(y)]dy-05loc8
the relative amount of system states is conserved, and the
other one corresponds to irreversible losg#s This allows +0.5logx%) +Sp. (18
us to suppose that for0B<1 the FFPK equation describes )
the random processes with memory. The entropyS(t) depends on time only on account Of).

To consider the evolution of stationary states by means of
slowly varying controlling parameterghey can be found
among the parameters characterizing the stationary) state
can use the S theorefi20] as a criterion of the relative
The FFPK equation is an integro-differential equation indegree of order in various states which reveals for what
partial derivatives with varying coefficients, so in generalstates the degree of order is higher. It should be noted that
one cannot analytically find its solution. For the stationarythe S-theorem considers only the stationary states using ther-
systems, the probability distribution does not depend on timgnal equilibrium as the reference point for the degree of
[(alat)P(x,t)=0], and their analysis leads to the Gibbs dis-chaos. Att— the probability distribution becomes negli-
tribution, the cornerstone of statistical physics. A natural ex-gible and it is necessary to renormalize the entropy,
tension of the stationary analysis is the study of nonstation-

IV. CRITERION FOR THE RELATIVE DEGREE
OF ORDER

ary systems in the self-similar regime, when the dependence S=5(t)-0.5 log/x?). (29
on two arguments,t is expressed in terms of a single vari-
abley=x/a(t): The procedure is equivalent to fixing the vala€) for any

value of a chosen controlling parametby the way, one of
P(x,t)=[a(t)]* ¢(y), (16) conditions of the S theorem is the equality condition for the



4756 A. A. STANISLAVSKY PRE 61

average effective Hamiltonian functions in different states ofdescribes the particle evolution in the space-time and is the
interes}, since this influences only the reference point ofGreen function of the TFDW equation. Averaging we
entropy and does not affect the renormalized entropy differebtain

ences between different states. Although the vgkfé de-

pends on the controlling paramet@as well as ont), the (x2>=fx X2 P(x,t) dé=
fixing of the former does not mean fixing the latter. Now —w '

using the renormalized entropy difference as a measure of

the relative degree of order, one can study the evolution of he probability distributior(21) obeys the following scaling
system states in the space of controlling parameters. relations:

D2~

r(28+1) 22

V. SOME EXAMPLES P(x=bPx,t=bt)=b"# P(x,t)

One of the simple cases of the FFPK equation is the timdor an arbitrary parametéy.

fractional diffusion-wavg TFDW) equation Note that if in (21) 8=1/2 we obtain the conventional

Brownian motion (purely random procegsFor =1 the

particle performs ballistic motiopurely deterministic pro-
ot2h P(x,t)= Dﬁ P(x.0), (20 cess. Next we are going to show thakQ8< 1 is the special

case when chaos and ordered motion coexist.

whereD is a positive constant. Its fundamental solutions in  Now let us calculate the entrof8) in this case

case of the basic Cauchy and Signalling problems are well B 2

known[21]. Let us take the poinP(£,0)=&(&) as an initial S(t)=0.5+0.5log,((x%)) + S(B). (23

position of a particle. If 1/2 <1, itis necessary o Specify ag 4 controling parameter we choggeand will consider the

the initial value of the first order time derivative o\ qytion of the sequence of states corresponding to different
(9l ) P(x,1)| 1o+, since in this case two linearly indepen- \5j,es of the controlling parameter. One should keep in mind
dent solutions are to be determined. To ensure the continyg 4 lim_...(£2)=c¢. For this reason we must renormalize the

ous dependence of our solution on thf paramgten the  oynression(23) according to Eq(19). Then the relative de-
transition from 2B=1 to 2B=1", we assume gree of order can be estimated as
(9l at)P(X,1)|;=o+=0. Then Eq.(20) has the following so-

%P 9?

lution: o
S(,8)=O.5Iogbl"(2,8+1)—f M(z,B) log,[M(z,8)] dz
0
1 ||
P(x,t)= M| ——:3], 21 (24)
(x,t) 200t | or? B (21) | o
The dependenc8(B) is represented in Fig. 1. It reaches the
where maximum atB.=1/2. We regard this state as a state of

physical chaogthe correctness of this assumption will have
o8 to be verified. The smooth decrease of the val(®) is a
M(z;8)= ﬁj e ——5, 0<B<1 quantitative measure of the increase in the degree of order.
Ha 7 Since the inequalitys(1/2)>S(B+ 1/2) is satisfied,8— 3
t TAp is the transition from a less ordered stdfhysical
chao$ to a more ordered state. This is an indication that we
have found the corresponding controlling parameter, and the
evolution of the system in the space of the controlling pa-
rameter is associated with self-organization. The conclusion

whereHa denotes the Hankel pafla contour that begins a

o=—x—ia (a>0), encircles the branch cut that lies along

the negative real axis, and ends uprat —+ib (b>0)].
Mainardi[21] developed the functioM (z;8) as a series

* (—1)"Z" is valid because fop=1 we have the purely deterministic
M(z;8)= > NT[—Bn+(1=3)] state which may be taken by a reference point of the degree
n=0 1% of order. Some orderedness also happens to be the case for

and showed that it is a particular case of the Wright function8<ﬂ.<l/2' Although here we do not come o complete or-
er, in some sense the orderedness is higher tharBfor
o n =1/2. Thus the valueB can be adopted as a measure of
z 1 \do - . . .
W(ZN )= D) ————= _f gutzot relative degree of order. It is useful to mention some particu-
n=o NPT(AN+w) 27 JHa at lar values, limy_,S(B)=1/In2 and $(1/2)=0.5(1
] ) +Ina)/In2. To sum up, the process considered above is the
wherex>—1, u>0 [10]. Itis non-negative for any €8  gpecial case when chaos and ordered motion coexist, the
<1 and satisfies the normalization conditi$fM(¢;8) d{  value g characterizing the relative degree of order in the
=1. Clearly, these properties are also characteristic to thprocess_ Next we will compare this process with the frac-
probability distribution mentioned above. F8=1 the func-  tjonal Brownian motion.
tion is the Diracé function. ForB=1/2 we have the Gauss- In many physical systems the Gaussian distribution is a
ian functionM (z;1/2)=exp(—Z/4)/\/w. For 0<B<1/2 the  straightforward consequence of the central limit theorem
function M (z; B) (z=0) decreases monotonically, while for which makes it possible to consider completely random pro-
1/2< <1 itfirst increases and then decreases, exhibiting itgesses. Hurst found a set of statistical tools to examine the
maximum value at a certain poiat,,,. The expressiof21) data which does not represent a purely random structure
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g FIG. 1. The dependence of the valBg3) on
the controlling parametes.

1 L 1 1 1 L L L 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

B

though standard statistical methods do not show any correlaalculus provides a bridge between purely deterministic pro-
tion between the observatiofi22]. Using his rescaled range cesses and purely stochastic ones. The fact is of interest in its
analysis one can extract meaningful information about thewn right because chaos and order in Nature coexist. Ac-
“memory” of a time series. If the observations are not inde- cording to Boltzmann and Gibbs, in closed statistical sys-
pendent, each carries a “memory” of events which precededems, evolution in time results in the equilibrium state which
it. Mandelbrot and Van Nesg23] suggested the so-called js the most chaoti¢or, in other words, purely randomThe
fractional Brownian motion(the fractional integral of the glement motions in closed systems are independent of each
white Gaussian noiges a model reflecting the phenomenon. giner. 1n open systems the environment induces memory ef-
The fractional Brownian motion has the following probabil- tocts o that the macroscopic behavior of such systems con-
ity distribution: tains a manifestation of microscopic dynamics. If micro-
5 scopic motion in the systems is very complex or random, the
1 ex;{ _ X ) _ (25) complete memory transmits the complex behavior to macro-
V2K tP 4K t2#
ing that the mode{used by usof memory at the points of a

II(x;t)= X . . .
() scopic evolution of the system as a whole. It is worth notic-
lts average(x?) is proportional tot?# as in the case of the Cantor set is not too exotic. It implies that memory is intrin-

process21). Then expressiofil8) is of the form sic to all time scalegin such a way that the corresponding
R memory function has no characteristic scalesthe phase
S(t)=0.5{In[27D(t)]+1}, (26)  space of a system given that the number of divisions gener-

R ating a Cantor set tends to infinity. In a different way, the
where D(t)=2K t?#. Renormalizing it in accordance with largest of time scales would be in the system as in the case of
Eq. (19) we obtainS$=0.5(In27+1). In other words, the the Markov approximation. We have demonstrated that the
renormalized entropy does not depend @ni.e., the frac- relationship between the Cantor set and the fractional inte-
tional Brownian motions with various Hurst exponents aregral reduces the generalizéth the terms of the memory
almost the same in respect to the relative degree of chao8ffects  Langevin,  Kramers-Moyal,  Fokker-Planck-
This example differs radically from the foregoing one: in the Kolmogorov equations to their fractional form. The frac-
model of fractional Brownian motiori25) the rise of or- tional generalizations turn out to be useful for studying the
deredness with changing the Hurst exponent is impossiblandom processes with residual memongthout any char-
for the simple reason that the shape of the probability distriacteristic time scale
bution does not change in the space of the controling param- The process described by the time fractional diffusion-
eter[compare with the procesg1)]. The numerical model- Wave equation is an example clearly showing that for chaos
ing verifies this conclusiofi24]. and ordered motion in a system to coexist, its probability
distribution must undergo qualitative changes in the function
form with slowly varying the system parameters. In our con-
sideration the parameter was the relative amount of the sys-

The fractional calculus formalism generalizing differen- tem states having orderedness during the system evolution.
tiation and integration to fractional orders has a long historyThe evolution in the space of the parameter looks like a
[25], but recently the interpretative approach opened broadtochastic analog of bifurcation connected with the phase
perspectives in physical and engineering applicationgransition “order-disorder.” For 8.3<1/2 the probability
[12,14,18. The above consideration shows that fractionaldistribution has one sharp maximum zt,,=0. If the pa-

VI. CONCLUDING REMARKS



4758

rameter attains the valyé=1/2 the function becomes flat.
Then for 1/2<3<1 the probability function takes the form
with two maxima symmetrical in respect to the origin of
coordinateswhere the function minimum is foundWhen

the parameteB goes towards 1, the probability to find a

particle between the maxima is becoming less and lesser, and

the function peaks get narrower and higher. Bor 1 the
probability distribution is transformed in tw® functions. As

A. A. STANISLAVSKY
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values of the index to any positive real values, let us define
the fractional integral of ordes>0,

@ 1 ! a—1 — *
| f(t):zr(a)fo(t—r) f(7) dr=® ,(t)* f(t).
(A2)

The Laplace transform of the fractional integral is the

a result, this system state becomes completely ordered. Thegraigthforward generalization of the ordinary casen

fractional Brownian motion has not the possibility. The

Hurst exponentwhich is the only parameter of the procgss

influences the asymtotic behavior of its autocorrelation func-

tion, but the process remains Gaussian anyhow.
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APPENDIX

In this appendix we consider briefly the basic formulas
used in the fractional calculus introduced in the text. The

starting point is the introduction of the causal functibg(t)
defined as

t)\fl

— . t=0,
®d,(t):=¢ T'(N) AeC,

0, t<0,

whose Laplace transform is

— + oo 1
LID\(D)]=Dy(5):= fo e (v dt=—,

(A1)
Rex>0, Res>0.

The function satisfies the composition rule
t
¢x(t)*¢ﬂ(t)=fo%(r)%(t—r)dT=<I>A+M(t),

Rex>0, Reu>0.

The integral of orden of a causal functiorf(t) can be
expressed by the convolution betweén andf

t ty th-2 th-1
|nf(t)=f dtlf dtzf dtn—lJ' f(T) dr
0 0 0 0

1 t
= —(n—l)! fof(r) (t—7n)" tdr

=Pn(t)* (1),

basing on the well known formula that reduces the calcula

tion of then-fold primitive to a single integral. Fax>0, the
function ®,(t) is locally absolutely integrable in 8t

<+o. To extend the above formula from positive integer

1 t f(7)
I'—a) 0(t—7')1+“

aeRT

dr=d_(1)* (1),
(A4)

is in general divergent. Nevertheless, K=-n (n
=0,1,...), thefunctions®,(t) can be treated in the frame-
work of generalized function®6]. In this case it reduces to
the n derivative (in the generalized sensef the Dirac §
function

D _ (1) :=6"(t).

Then formally the derivative of order of a causal function
f(t) can be obtained by the convolution between,(t) and
f

d" t
—f(t):=f f(r) SM(t—7)dr=d_,(t)*f(t), t>0.
dt" 0
The limit casea=0 defines the identity operator
t
J f(7) 8(t—7)dr=Dy(t)* f(t)=Ff(1).
0

In order to obtain a definition for the fractional derivative
(with nonintegera) that is valid for classical functions, we
have to regularize the divergent integta4) in some way.

As a consequence we arrive at two alternative regular defi-
nitions for the fractional derivativ®®, which read forn
—1<a<n

¢ ()_F(n—a) dt" O(t_T)a+l—n 7 ( )
et _if e 1 ft fW(7)
r ()_dta ()_F(n_a) O(I_T)a+1_n T.
(AB)

The difference between the two definitions lies in

n—-1
D?f(t)=D$f(t>+k§0 FO07) @ g s 1y(1).
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The defintion(A5) is the most commonly adopted in math-
ematically oriented papers and book&5]. The definition
(A6), introduced by Caputfil7], is more restrictive than Eq.
(A5) because it requires the functidiit) to ben differen-

tiable. As it was shown in this paper, the latter definitions are
more suitable for the problems considered above where the
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and from Eqgs(Al) and (A6) we get

a n—-1
E{d—f(t)lzs“f_(s)—E s 1k (0),
dt* k=0
(A8)

conventional initial conditions are expressed in terms of in-

teger derivatives. Using the classical technique of Laplace

transform

n—-1
=s“f_(s)—k§=:o s"1kfM(0*), neN

(A7)

L

d—nf(t)l
dx"

n—1<a<n,

first stated by Caputfdl 7]. It is worth noticing that according
to the definition(A5) the fractional derivative of a constant
does not vanish ifx is not an integer, while according to
defintion (A6) it vanishes for anyx.
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